This study relates to a novel mediator signaling between the nervous system and the spleen following an immune challenge. Using enzyme-linked immunospot and cell proliferation assays, we found that supernatants of cultured splenocytes prepared from subcutaneously trypanosome-inoculated rats and mice spleens obtained immediately after inoculation and added to naive cells significantly stimulate interferon-c production and cell proliferation compared to phosphate-buffered saline-inoculated animals. This action was abrogated by surgical denervation of the spleen. Using the fluorescent differential display technology, the gene involved in this process was identified and further cloned and its sequence was mapped to chromosome 14 (GenBank accession number: EU552928). Protein expression revealed B15 kDa molecule with biological activities similar to the cultured supernatants of splenocytes obtained directly from parasite-inoculated animals. Antibodies raised against the protein blocked the activities of both the protein and the supernatant and also recognized a band in the active supernatant with the same molecular mass as the protein. Furthermore, the protein was able to reactivate experimentally immunosuppressed cells by regaining their ability to proliferate, suggesting that such a nervous system-induced immune system-released activating agent (ISRAA) may have a potential therapeutic benefit in immunocompromised situations and in further understanding the mechanism for innate immunity commencement and action. Keywords: CNS; cytokine; innate immunity; immunosuppression A bewildering array of infectious agents and parasites gain subsistence at the expense of their hosts. Although host-parasite interplay depends on the virulence of parasites and resistance of the host, the early events of innate immunity during host-parasite interactions are very important in directing the ultimate pattern of the immune response. These early events of the innate immune response are, however, much less well characterized than the later secondary immune responses.Immune responses are not isolated from other organ systems in the body, and indeed there are various means of communication between these organ systems and the immune system. Among these communications are regulatory interactions between the nervous and the immune systems.