Background
Over-expression of cyclooxygenase (COX)-2 promotes breast cancer progression by multiple mechanisms, including induction of stem-like cells (SLC). Combined gene expression and microRNA microarray analyses of empty vector vs
COX-2-
transfected COX-2 low MCF7 breast cancer cell line identified two COX-2-upregulated microRNAs, miR-526b and miR-655, both found to be oncogenic and SLC-promoting. Cytoplasmic Polyadenylation Element-Binding Protein 2 (CPEB2) was the single common target of both microRNAs, the functions of which remain controversial. CPEB2 has multiple isoforms (A-F), and paradoxically, a high B/A ratio was reported to impart anoikis-resistance and metastatic phenotype in triple- negative breast cancer cells. We tested whether CPEB2 is a tumor suppressor in mammary epithelial cells.
Methods
We knocked-out
CPEB2
in the non-tumorigenic mammary epithelial cell line MCF10A by CRISPR/Cas9-double nickase approach, and knocked-down
CPEB2
with siRNAs in the poorly malignant MCF7 cell line, both lines being high
CPEB2
-expressing. The resultant phenotypes for oncogenity were tested in vitro for both lines and in vivo for
CPEB2KO
cells. Finally
, CPEB2
expression was compared between human breast cancer and non-tumor breast tissues.
Results
CPEB2
(isoform A) expression was inversely correlated with
COX-2
or the above microRNAs in
COX-2
-divergent breast cancer cell lines. CPEB2KO MCF10A cells exhibited oncogenic properties including increased proliferation, migration, invasion, EMT (decreased E-Cadherin, increased Vimentin, N-Cadherin, SNAI1, and ZEB1) and SLC phenotype (increased tumorsphere formation and SLC marker-expression). Tumor-suppressor p53 protein was shown to be a novel translationally-regulated target of CPEB2, validated with polysome profiling. CPEB2KO, but not wild-type cells produced lung colonies upon intravenous injection and subcutaneous tumors and spontaneous lung metastases upon implantation at mammary sites in NOD/SCID/IL2Rϒ-null mice, identified with HLA immunostaining. Similarly, siRNA-mediated
CPEB2
knockdown in MCF7 cells promoted oncogenic properties in vitro
.
Human breast cancer tissues (
n
= 105) revealed a lower mRNA expression for
CPEB2
isoform A and also a lower A/B isoform ratio than in non-tumour breast tissues (
n
= 20), suggesting that CPEB2A accounts for the tumor-suppressor functions of CPEB2.
Conclusions
CPEB2, presumably the isoform A, plays a key role in suppressing tumorigenesis in mammary epithelial cells by repressing EMT, migration, invasion, proliferation and SLC phenotype, via multiple targets,...