The present study adds to the knowledge of the free vibration of antisymmetric angle-ply annular circular plates with variable thickness for simply supported boundary conditions. The differential equations in terms of displacement and rotational functions are approximated using cubic spline approximation. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of the annular circular plates is examined for circumferential node number, radii ratio, different thickness variations, number of layers, stacking sequences and lamination materials.