Electric motor development is a challenging task, as higher efficiency requirements and various interdependencies between different engineering domains must be considered. Established design approaches often lack the ability to address these interdependencies because they focus on specific domains and properties. Automated, multidisciplinary design approaches hold untapped potential for optimizing motors in terms of diverse requirements and advancing the development of more efficient and reliable motors. This paper presents a systematic literature review of the current state of research in the multidisciplinary design automation of electric motors. The literature basis comprises 1005 publications that are identified by a systematic internet search. The review of the existing approaches is based on twelve criteria that characterize the design automation task in general, such as knowledge representation or reasoning methods used, as well as criteria specific to electric motor design, such as domains considered and their coupling. The analysis reveals what current approaches are lacking: Consequent analysis and integration of domains, applicability of suggested methods, incorporation of established multidisciplinary design optimization (MDO) architectures, alongside the consideration of passive components in the motor. Aside from the introduction of twelve criteria for systematic charaterization of multidisciplinary design automation of electric motors, this article expands the state of the art by proposing an initial framework to establish process chains tackling the identified gaps in the review.