Computational studies of allosteric interactions have witnessed a recent renaissance fueled by growing interest in the modeling of complex molecular assemblies and biological networks. Allosteric interactions of the molecular chaperone Hsp90 with a diverse array of cochaperones and client proteins allow for molecular communication in signal transduction networks. In this review, recent developments in the understanding of allosteric interactions in the context of structural, functional, and computational studies of the Hsp90 chaperone are discussed. A comprehensive analysis of structural and network‐based models of protein allostery is provided. Computational and experimental approaches and advances in the understanding of Hsp90 interactions and regulatory mechanisms are reviewed to provide a systematic and critical view of the current progress and most challenging questions in the field. The current status and future prospects for translational research, bridging the basic science of chaperones with the discovery of anti‐cancer therapies, are also highlighted.