We study the complexity of deciding whether a given digraph D has a vertex-partition into two disjoint subdigraphs with given structural properties. Let H and E denote following two sets of natural properties of digraphs: H ={acyclic, complete, arcless, oriented (no 2-cycle), semicomplete, symmetric, tournament} and E ={strongly connected, connected, minimum outdegree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1, minimum degree at least 1, having an out-branching, having an in-branching}. In this paper, we determine the complexity of of deciding, for any fixed pair of positive integers k1, k2, whether a given digraph has a vertex partition into two digraphs D1, D2 such that |V (Di)| ≥ ki and Di has property Pi for i = 1, 2 when P1 ∈ H and P2 ∈ H ∪ E. We also classify the complexity of the same problems when restricted to strongly connected digraphs. The complexity of the problems when both P1 and P2 are in E is determined in the companion paper [2].