A new well model for one-phase flow in anisotropic porous media is introduced, where the mass exchange between well and a porous medium is modeled by spatially distributed source terms over a small neighborhood region. To this end, we first present a compact derivation of the exact analytical solution for an arbitrarily oriented, infinite well cylinder in an infinite porous medium with anisotropic permeability tensor in R 3 , for constant well pressure and a given injection rate, using a conformal map. The analytical solution motivates the choice of a kernel function to distribute the sources. The presented model is independent from the discretization method and the choice of computational grids. In numerical experiments, the new well model is shown to be consistent and robust with respect to rotation of the well axis, rotation of the permeability tensor, and different anisotropy ratios. Finally, a comparison with a Peacemantype well model suggests that the new scheme leads to an increased accuracy for injection (and production) rates for arbitrarily-oriented pressure-controlled wells.