Finite soluble groups in which all the Sylow subgroups are abelian were first investigated by Taunt [8] who referred to them as A-groups. Locally finite groups with the same property have been considered by Graddon [2]. By the use of Sylow theorems it is clear that every section (homomorphic image of a subgroup) of an A-group is also an A-group and hence every nilpotent section of an A-group is abelian. This is the characterization that we use here in considering groups which are not, in general, periodic.