Mitochondrial nucleoids (hereafter nucleoids) contain genetic information, mitochondrial DNA, prerequisite for mitochondrial functioning, particularly information required for mitochondrial electron transport. To understand nucleoid functioning, it is imperative to know its ultrastructure and dynamics in the context of the actual mitochondrial state. In this study, we document the internal structure, different positions of nucleoids inside the mitochondrial tube and their different morphology. The nucleoid cores appear in section as circular or slightly oval objects ranging from 50 to 100 nm in diameter. They are mainly located in the matrix between cristae inside the mitochondrial tube but they are also frequently found close to the inner mitochondrial surface. In tightly packed form, their interior exhibits sophisticated nucleoprotein regularity. The core surroundings form an electron-lucent thick layer which is probably partitioned into separate chambers. We suggest that the morphology of nucleoids mirrors the mode of energy production, glycolysis versus oxidative phosphorylation. The new high resolution transmission electron microscopy method enabled us to obtain morphological characteristics on yet unpublished level.