Ryuichiro HIGASHINAKA†a) , Nonmember and Mikio NAKANO † †b) , Member SUMMARY This paper discusses the discourse understanding process in spoken dialogue systems. This process enables a system to understand user utterances from the context of a dialogue. Ambiguity in user utterances caused by multiple speech recognition hypotheses and parsing results sometimes makes it difficult for a system to decide on a single interpretation of a user intention. As a solution, the idea of retaining possible interpretations as multiple dialogue states and resolving the ambiguity using succeeding user utterances has been proposed. Although this approach has proven to improve discourse understanding accuracy, carefully created hand-crafted rules are necessary in order to accurately rank the dialogue states. This paper proposes automatically ranking multiple dialogue states using statistical information obtained from dialogue corpora. The experimental results in the train ticket reservation and weather information service domains show that the statistical information can significantly improve the ranking accuracy of dialogue states as well as the slot accuracy and the concept error rate of the top-ranked dialogue states.