Abstract:In this paper, we reduce the rescoring problem in a spoken dialogue understanding task to a classification problem, by using the semantic error rate as the reranking target value. The classifiers we consider here are trained with linguistically motivated features. We present comparative experimental evaluation results of four supervised machine learning methods: Support Vector Machines, Weighted K-Nearest Neighbors, Naïve Bayes and Conditional Inference Trees. We provide a quantitative evaluation of learning a… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.