2010
DOI: 10.1007/978-3-642-13881-2_12
|View full text |Cite
|
Sign up to set email alerts
|

Spoken Language Understanding via Supervised Learning and Linguistically Motivated Features

Abstract: In this paper, we reduce the rescoring problem in a spoken dialogue understanding task to a classification problem, by using the semantic error rate as the reranking target value. The classifiers we consider here are trained with linguistically motivated features. We present comparative experimental evaluation results of four supervised machine learning methods: Support Vector Machines, Weighted K-Nearest Neighbors, Naïve Bayes and Conditional Inference Trees. We provide a quantitative evaluation of learning a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance