Numerous studies have reported the existence of sponge-specific 16S ribosomal RNA (rRNA) gene sequence clusters, representing bacteria found in sponges but not detected in other environments, such as seawater. The advent of deep-sequencing technologies allows us to examine the rare microbial biosphere in order to establish whether these bacteria are truly sponge specific, or are more widely distributed but only at abundances below the detection limit of conventional molecular approaches. We screened 412 million publicly available 16S rRNA gene pyrotags derived from 649 seawater, sediment, hydrothermal vent and coral samples from temperate, tropical and polar regions. We detected 77 of the 173 previously described sponge-specific clusters in seawater or other non-sponge samples, albeit generally at extremely low abundances. Sequences representing the candidate phylum 'Poribacteria', previously thought to be largely restricted to sponges, were recovered from 46 (out of 411) seawater and 41 (out of 129) sediment samples. While the presence of an organism does not imply that it is active in situ, our results do suggest that many 'spongespecific' bacteria occur more widely outside of sponge hosts than previously thought. The ISME Journal (2013) 7, 438-443; doi:10.1038/ismej.2012.111; published online 4 October 2012Subject Category: microbe-microbe and microbe-host interactions Keywords: marine sponge; bacteria; specificity; 16S rRNA pyrosequencing Marine sponges form relationships with a diverse range of microbes (Taylor et al., 2007;Webster and Taylor, 2012), and many of these associations are highly host specific (Schmitt et al., 2012). Numerous studies have reported the existence of monophyletic sponge-specific 16S ribosomal RNA (rRNA) gene sequence clusters, representing bacteria found in sponges but not detected in other environments, such as seawater (Hentschel et al., 2002;Taylor et al., 2007;Simister et al., 2012). In a recent 16S rRNA gene tag pyrosequencing study (Webster et al., 2010), we revealed the presence of sequences affiliated with 'sponge-specific' clusters in seawater. While this finding suggests that 'sponge-specific' bacteria can in fact reside outside of these hosts, the seawater was collected only 10 m away from the sampled sponges at the time of sponge spawning and thus a sponge origin for these bacteria could not be unequivocally ruled out. To clarify this fundamental issue in sponge symbiont biology, we examined 412 million 16S rRNA gene pyrotags (V6 region) generated under the auspices of the International Census of Marine Microbes (ICoMM; http://icomm.mbl.edu/). These sequences were derived from a range of seawater, sediment, hydrothermal vent and coral samples obtained from temperate, tropical and polar regions (Figure 1). The absence of 'sponge-specific' bacteria from these samples would provide strong additional evidence for their host specificity, whereas their widespread occurrence among non-sponge samples would imply that they are capable of at least surviving in a free-living state...