Background: This study explored the serum concentrations of miR-26 in patients with carotid atherosclerosis (CAS) and defined the roles and mechanisms of miR-26 derived from the exosomes of adipose-derived stem cells (ADSC-exos).
Methods: The carotid artery width was diagnosed by ultrasound examination in patients with different degrees of CAS. The serum levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in patients were detected by biochemistry. The serum levels of miR-26 were determined by quantitative polymerase chain reaction (qPCR). A model of CAS in ApoE −/− mice fed with a rich-fat diet was established to analyze the regulatory effects of serum miR-26 on blood lipids in mice. Adipose mesenchymal stem cell lines transfected with miR-26 were established. The regulatory relationship between the expression levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β, and the expression levels of miR-26 in the supernatant of each group of cells was determined by qPCR. The ADSC-exos were extracted from ADSCs and injected into model mice through the tail vein. The therapeutic effect of ADSCs expressing miR-26 on model mice was evaluated by detecting the levels of inflammatory factors and blood lipids in the serum of the mice. Results: The degree of atherosclerosis (AS) was positively associated with the intima-media thickness (IMT) of the carotid artery. The serum levels of miR-26 in patients were inversely correlated with the levels of blood lipids (TC, TG, and LDL-C), and positively correlated with HDL-C levels. Similarly, in the CAS mouse model, the serum levels of miR-26 were inversely correlated with the levels of blood lipids (TC, TG, and LDL-C), and positively correlated with HDL-C level. In ADSCs transfected with miR-26, the miR-26 expression in the cell supernatant was negatively regulated by the expression of inflammatory factors, TNF-α, IL-6, and IL-1β, in the cell supernatant. ADSC-exos expressing miR-26 has positive effects on correcting blood lipids and inflammatory factors in the mouse model of CAS.Conclusions: miR-26 has an active role in CAS and may be a novel target for the treatment of CAS in the future.