In this study, we report a facile synthesis of silver nanoparticle having SERS and antimicrobial activity using bacterial exopolysaccharide (EPS). Bacillus subtilis (MTCC 2422) was grown in nutrient broth and the extracellular EPS secreted by the organism was extracted and purified. The purified EPS was used for the synthesis of silver nanoparticles. The kinetics of silver nanoparticle synthesis was deduced by varying the exposure time and the concentration of EPS. The rate constant (k) for the synthesis of silver nanoparticle was calculated from the slope of ln(A 1 À A t ) versus time plot. The k value was found to be 3.49 Â 10 À3 , 5.81 Â 10 À3 and 5.03 Â 10 À3 per min for particle synthesis using 2, 5 and 10 mg/mL EPS, respectively. The nanoparticles synthesised had an average particle size of 5.18 AE 1.49 nm, 1.96 AE 0.77 nm and 2.08 AE 0.88 nm for 2, 5 and 10 mg/mL EPS, respectively. The synthesised particles were characterised using UV-Vis absorbance spectroscopy, high-resolution transmission electron microscopy (HRTEM) attached to EDS (energy dispersive spectroscopy), Fourier transform infrared spectroscopy (FTIR), surface enhanced Raman spectroscopy (SERS) and zeta potential analyser. To our knowledge, this is the first study to report SERS activity of microbial Bacillus subtilis EPS-based synthesis of silver nanoparticle. HRTEM images showed silver nanoparticle entrapped in polysaccharide nanocages. Silver nanoparticle showed higher adherence towards the bacterial surface, with good bactericidal activity against Pseudomonas aeroginosa and Staphylococcus aureus.