Natural polymers, particularly plant‐derived nanocelluloses, self‐organize into hierarchical structures, enabling mechanical robustness, bright iridescence, emission, and polarized light reflection. These biophotonic properties are facilitated by the assembly of individual components during evaporation, such as cellulose nanocrystals (CNCs), which exhibit a left‐handed helical pitch in a chiral nematic state. This work demonstrates how optically active films with pre‐programmed opposite handedness (left or right) can be constructed via shear‐induced twisted printing with clockwise and counter‐clockwise shearing vectors. The resulting large‐area thin films are transparent yet exhibit pre‐determined mirror‐symmetrical optical activity, enabling the distinction of absorbed and emitted circularly polarized light. This processing method allows for sequential printing of thin and ultrathin films with twisted layered organization and on‐demand helicity. The complex light polarization behavior is due to step‐like changes in linear birefringence within each deposited layer and circular birefringence, different from that of conventional CNC films as revealed with Muller matrix analysis. Furthermore, intercalating an achiral organic dye into printed structures induces circularly polarized luminescence while preserving high transmittance and controlled handedness. These results suggest that twisted sequential printing can facilitate the construction of chiroptical metamaterials with tunable circular polarization, absorption, and emission for optical filters, encryption, photonic coatings, and chiral sensors.