PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. H. Brinksma, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 1 oktober 2009 om 16.45 uur door Alex Hartsuiker geboren op 3 februari 1980 te Arnhem Dit proefschrift is goedgekeurd door: prof. dr. W. L. Vos Wilt gij naar verre hoogten, gebruik dan uw eigen benen! Laat u niet omhoog dragen, ga niet zitten op vreemde ruggen en koppen! -Friederich Nietzsche, Also sprach Zarathustra -C Bibliography 147 A Center frequency versus Si filling fraction 157 B Photonic strength 159 Nederlandse samenvatting 161 Dankwoord 165 ix CHAPTER 1 with the dotted lines. The stopband has 100% reflectivity, while the cavity results in a trough at the resonance frequency ω 0 (solid line). fulfilled at a wavevector with a modulus k = π/d. At k = π/d a gap opens up in the dispersion relation with a width determined by the photonic strength S. This modification of the dispersion relation can be attributed to the Bragg stacks. In the middle of the gap a band of modes is present, indicated by the line [22]. This band of modes is the result of that is stored in the cavity red-shifts due to the switched cavity resonance. The empty cavity relaxes to its original resonance wavelength. (B) Schematic representation of an empty cavity that is switched. When the cavity is switched and relaxes to its original resonance wave-length, the cavity is loaded with photons. During the relaxation, the photons change color in absence of a pump pulse.