This Feature Article reviews recent progress in the tailored assembly of carbon nanotubes and graphene into three-dimensional architectures with particular emphasis on our own research employing self-assembly principles. Carbon nanotubes and graphene can be assembled into macroporous fi lms, hollow spherical capsules, or hollow nanotubes, via directed assembly from solvent dispersion. This approach is cost-effective and benefi cial for large-scale assembly, but pre-requests stable dispersion in a solvent medium. Directed growth from a nanopatterned catalyst array is another promising approach, which enables the control of morphology and properties of graphitic materials as well as their assembly. In addition, the aforementioned two approaches can be synergistically integrated to generate a carbon hybrid assembly consisting of vertical carbon nanotubes grown on fl exible graphene fi lms. Tailored assembly relying on scalable self-assembly principles offer viable routes that are scalable for mass production towards the ultimate utilization of graphitic carbon materials in nanoelectronics, displays, sensors, energy storage/conversion devices, and so on, including future fl exible devices.