Experimental investigations into the rates and fitness effects of spontaneous mutations are fundamental for our understanding of the evolutionary process. To gain insights into the molecular and fitness consequences of spontaneous mutations, we conducted a mutation accumulation (MA) experiment at varying population sizes in the nematode Caenorhabditis elegans, evolving 35 lines in parallel for 409 generations at three population sizes (N = 1, 10, 100 individuals). Here, we focus on nuclear SNPs and small indels under minimal influence of selection, as well as their accrual rates in larger populations under greater selection efficacy. The spontaneous rates of base substitutions and small indels are 1.84 × 10−9 substitutions and 6.84 × 10−10 changes /site/generation, respectively. Small indels exhibit a deletion-bias with deletions exceeding insertions by three-fold. Notably, there was no correlation between the frequency of base substitutions, nonsynonymous substitutions or small indels with population size. These results contrast with our previous analysis of mtDNA mutations and nuclear copy-number changes in these MA lines, and suggest that nuclear base substitutions and small indels are under less stringent purifying selection compared to the former mutational classes. A transition bias was observed in exons as was a near universal base substitution bias towards A/T. Strongly context-dependent base substitutions, where 5’–T and 3’–As increase the frequency of A/T → T/A transversions, especially at the boundaries of A or T homopolymeric runs, manifest as higher mutation rates in (i) introns and intergenic regions relative to exons, (ii) chromosomal cores versus arms and tips, and (iii) germline-expressed genes.