Mutations are the source of genetic variation and a prerequisite for evolution. Despite their fundamental importance, however, their rarity makes them expensive and difficult to detect, which has limited our ability to measure the extent to which mutational processes vary within and between species. Here, we use the 1011 Saccharomyces cerevisiae collection to measure variation of mutation rates and spectra among strains isolated from a variety of natural and human-related environments. The mutation spectra of variants segregating in different S. cerevisiae populations exhibit differences in the relative numbers of specific transition and transversion types, a pattern reminiscent of previously observed mutation spectrum differences between populations of humans, great apes, and mice. Such natural variation is thought to reveal historical differences in the activity of particular mutational processes, but is also potentially complicated by other forces such as admixture, genetic drift, and selection. In order to directly test how much of the observed mutation spectrum variation is caused by heritable differences between extant strains of S. cerevisiae, we developed an experimental pipeline to assay de novo mutation rates and spectra of individual strains, using the reporter gene CAN1. We found a 10-fold range of mutation rate variation among 16 haploid strains surveyed. While many strains exhibit similar mutation spectra, two related strains from the panel’s “Mosaic beer” clade, known as AEQ and AAR, share a distinctive mutation spectrum enrichment for C>A mutations. This C>A enrichment found through our experimental pipeline mirrors an enrichment of C>A mutations in rare variants segregating throughout the genomes of AEQ and AAR as well as additional Mosaic beer strains. We deduce that a major axis of S. cerevisiae mutation spectrum variation is likely driven by one or more naturally occurring mutator alleles whose action is measurable in a controlled laboratory environment.