Membrane nanodomains have been implicated in Ras signaling, but what these domains are and how they interact with Ras remain obscure. Using high throughput single particle tracking with photoactivated localization microscopy and detailed trajectory analysis, here we show that distinct membrane domains dictate KRas diffusion and trafficking in U2OS cells. KRas exhibits an immobile state in domains ~70 nm in size, each embedded in a larger domain (~200 nm) that confers intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRas is continuously removed from the membrane via the immobile state and replenished to the fast state, likely coupled to internalization and recycling. Importantly, both the diffusion and trafficking properties of KRas remain invariant over a broad range of protein expression levels. Our results reveal how membrane organization dictates KRas diffusion and trafficking and offer insight into how Ras signaling may be regulated through spatial mechanisms.
Figure 2. KRas diffusion states are associated with distinct membrane domains.A) The three-state model for KRas diffusion with F, N, and I, representing the fast, the intermediate, and the immobile states, respectively. Model parameters were inferred using vbSPT on spt-PALM datasets with at least 30,000 trajectories obtained on cells induced with 2 ng/mL Dox. The arrows indicate state transitions (i.e. the probability of switching to a different state in the next frame) and the area of the circle and the thickness of the arrows are both roughly scaled to reflect their relative values. All parameters were derived from data acquired at 12 ms frame interval except for the diffusion coefficient of the immobile state, which was inferred from data taken at 35 ms frame interval. Error bars are 95% CIs; B)Step size histograms for immobilization events (red), one step before or after the immobilization event (blue), and all other steps (black). A diffusion step was part of an immobilization event if immobile state was assigned to that trajectory segment by vbSPT (see Methods); C) Map of the membrane locations where KRas molecules exhibit specific diffusion states (referred to as state coordinates) within a one-minute duration (taken from a spt-PALM dataset of ~20 min total duration). Red, blue, and green dots represent locations of the immobile, the intermediate, and the fast states, respectively, with each rendered circles scaled proportionally to the mean diffusion coefficient for the state; D) Pair correlation analysis on the averaged state coordinates across multiple, one-minute segments of longer spt-PALM datasets. The same color coding as in B) was used to distinguish the three states. For this analysis, molecules in the same diffusion state in successive frames only contributed a single, averaged state coordinate. The average state coordinates of all molecules captured within a one-minute segment were used for correlation analysis, and the results from multiple one-minute segments were averaged to yield the plot. Th...