We present an experimental study investigating the transition zone between a liquid-like unyielded region and a solid-like yielded region in a yield-stress fluid. The configuration consists of a rectangular closed-channel flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. In this study, we use a model fluid, namely polymer micro-gel Carbopol, which exhibits Herschel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by particle image velocimetry using an internal visualization technique. The main outcome of this study is to show that, except in a thin transition layer close to the solid-liquid interface, the flow behaves as an apparent Poiseuille flow with an apparent slip condition at the base. The slip frontier is found to be almost independent of the flow rate while the corresponding slip velocity increases with the flow rate.