In this paper, we perform global stability analysis of a multi‐group SEIR epidemic model in which we can consider the heterogeneity of host population and the effects of latency and nonlinear incidence rates. For a simpler version that assumes an identical natural death rate for all groups, and with a gamma distribution for the latency, the basic reproduction number is defined by the theory of the next generation operator and proved to be a sharp threshold determining whether or not disease spread. Under certain assumptions, the disease‐free equilibrium is globally asymptotically stable if R0≤1 and there exists a unique endemic equilibrium which is globally asymptotically stable if R0>1. The proofs of global stability of equilibria exploit a matrix‐theoretic method using Perron eigenvetor, a graph‐theoretic method based on Kirchhoff's matrix tree theorem and Lyapunov functionals. Copyright © 2015 John Wiley & Sons, Ltd.