A facile periodical secondary growth method, based on conventional secondary growth, is proposed to prepare bilayer TS-1 membranes. The novel periodical secondary growth consists of two or several periods, which involve three steps: the temperature is programmed to a desired crystallization temperature as the first stage, followed by holding for a certain duration, and finally cooling to room temperature. This periodical crystallization model enables a bilayer TS-1 membrane to be produced, while the conventional secondary growth method produces a monolayer TS-1 membrane. The bilayer TS-1 membrane exhibits a superior defect-free structure and hydrophobic properties, as illustrated by SEM, gas permeance, pore size distribution analysis, and water contact angle measurement. It displays an earlier desalination separation factor compared to the monolayer TS-1 membrane. This work demonstrates that the periodical secondary growth is an advanced approach for preparing a bilayer zeolite membrane with excellent properties.