The propagation laws of explosion shock waves and flames in various chambers were explored through a self-built large-scale gas explosion experimental system. The propagation process of shock waves inside the cavity was explored through numerical simulation using Ansys Fluent, and an extended study was conducted on the wave attenuation effect of multiple cavities connected in a series. The findings show that the cavity’s length and diameter influenced the weakening impact of shock waves and explosive flames. By creating a reverse shock wave through complicated superposition, the cavity’s shock wave weakening mechanism worked. By suppressing detonation creation inside the cavity, the explosive flame was weakened by the cavity’s design. The multi-stage cavity exhibited sound-weakening effects on both shock waves and explosive flames, and an expression was established for the relationship between the suppression rate of shock force and the number of cavities. Diffusion cavities 35, 55, 58, and 85 successfully suppressed explosive flames. The multi-stage cavity efficiently reduced the explosion shock wave. The flame suppression rate of the 58-35 diffusion cavity explosion was 93.38%, whereas it was 97.31% for the 58-35-55 cavity explosion. In engineering practice, employing the 58-58 cavity is advised due to the construction area, construction cost, and wave attenuation impact.