Films putter ilms
The cover imageThe image on the cover is based on an elemental energy dispersive x-ray spectroscopy map of Sc0.2Al0.8N deposited at 400°C obtained in a transmission electron microscope. Each individual square represents an area of ~1x1 nm. Here, scandium was assigned the green color, and aluminum is mapped using purple. No tendencies to cluster into Sc-rich or Al-rich regions can be seen, indicating a solid solution.A special Thank You for recording this data goes to Dr. Justinas Pališaitis! © Agnė Žukauskaitė Printed by LiU-Tryck Linköping, Sweden, 2014 i Abstract Metastable ScxAl1-xN and YxAl1-xN thin films were deposited in an ultra high vacuum system using reactive magnetron sputter epitaxy from elemental Al, Sc, and Y targets in Ar/N2 gas mixture. Their structural, electrical, optical, mechanical, and piezoelectrical properties were investigated by using the transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, I-V and C-V measurements, nanoindentation, and two different techniques for piezoelectric characterization: piezoresponse force microscopy and double beam interferometry.Compared to AlN, improved electromechanical coupling and increase in piezoelectric response was found in ScxAl1-xN/TiN/Al2O3 structures with Sc content up to x=0.2. Decreasing the growth temperature down to 400 °C improved the microstructure and crystalline quality of the material. Microstructure of the films had a stronger influence on piezoelectric properties than the crystalline quality, which affected the leakage currents. When x was increased from x=0 to x=0.3, the hardness and reduced Young's modulus Er showed a decrease from 17 GPa to 11 GPa, and 265 GPa down to 224 GPa, respectively. In ScxAl1-xN/InyAl1-yN superlattices, ScxAl1-xN layers negative lattice mismatched to In-rich InyAl1-yN were found to be stable at higher Sc concentration (x=0.4) than lattice-matched or positive lattice mismatched layers, confirmed by first principle (ab initio) calculations using density-functional formalism.Al-rich YxAl1-xN thin films were synthesized and reported for the first time. Den andra delen av min avhandling handlar om det helt outforskade materialet yttrium-aluminium-nitrid (YxAl1-xN). Jag är den första att rapportera om tunnfilmer av YxAl1-xN i wurtzitstruktur och detta material är, likt ScxAl1-xN, också metastabilt. Jag visar att kristallkvaliteten förbättras genom att i detta fall öka processtemperaturen från 700 °C upp till 900 °C, detta därför att yttriumatomer är relativt stora och behöver mer energi för att placera sig på rätt ställe i wurtzitstrukturen. Jag har även visat hur de optiska egenskaperna hos YxAl1-xN påverkas genom legering med olika halt av yttrium.En jämförelse mellan dessa två metastabila material leder till en djupare förståelse för vad som behövs, tex. hur processparametrar ska väljas, för att skapa tidigare oprövade material med bra kristallkvalitet och nya spännande egenskaper som kan lösa olika teknologiska problem.