SUMMARY Squamous cell carcinoma antigen (SCCA) serves as a serological marker for advanced squamous cell carcinomas (SCCs) and as an indicator of therapeutic response. Recent molecular studies show that the SCCA is transcribed by two almost identical tandemly arrayed genes, SCCA1 and SCCA2. These genes are members of the high molecular weight serine proteinase inhibitor (serpin) superfamily. Although SCCA1 and SCCA2 are 92% identical at the amino acid level, they have distinct biochemical properties. Paradoxically, SCCA1 is an inhibitor of papain-like cysteine proteinases, such as cathepsins L, S, and K, whereas SCCA2 inhibits chymotrypsin-like serine proteinases, cathepsin G, and mast cell chymase. Using a new set of discriminatory monoclonal antibodies (MAbs) and polymerase chain reaction (PCR) assay, we showed that SCCA1 and SCCA2 were co-expressed in the suprabasal layers of the stratified squamous epithelium of the tongue, tonsil, esophagus, uterine cervix and vagina, Hassall's corpuscles of the thymus, and some areas of the skin. SCCA1 and SCCA2 also were detected in the pseudo-stratified columnar epithelium of the conducting airways. Examination of squamous cell carcinomas of the lung and head and neck showed that SCCA1 and SCCA2 were co-expressed in moderately and well-differentiated tumors. Moreover, there was no differential expression between these SCCA "isoforms" in normal or malignant tissues. In contrast to previous studies, these data indicated that the expression of SCCA1 and SCCA2 was not restricted to the squamous epithelium and that these serpins may coordinately regulate cysteine and serine proteinase activity in both normal and transformed tissues.