Feature integration theory can be regarded as a perception theory, but the extraction of visual features using such a theory within the CBIR framework is a challenging problem. To address this problem, we extract the color and edge features based on a multi-integration features model and use these for image retrieval. A novel and highly simple but efficient visual feature descriptor, namely, a multi-integration features histogram, is proposed for image representation and content-based image retrieval. First, a color image is converted from the RGB to the HSV color space, and the color features and color differences are extracted. Then, the color differences are calculated to extract the edge features using a set of simple integration processes. Finally, combining the color, edge, and spatial layout features allows representing the image content. Experiments show that our method produces results comparable to existing and well-known methods on three datasets that contain 25,000 natural images. The performances are significantly better than that of the BOW histogram, local binary pattern histogram, histogram of oriented gradient, and multi-texton histogram, with performances similar to the color volume histogram.