Many emerging quantum technologies demand precise engineering and control
over networks consisting of quantum mechanical degrees of freedom connected by
propagating electromagnetic fields, or quantum input-output networks. Here we
review recent progress in theory and experiment related to such quantum
input-output networks, with a focus on the SLH framework, a powerful modeling
framework for networked quantum systems that is naturally endowed with
properties such as modularity and hierarchy. We begin by explaining the
physical approximations required to represent any individual node of a network,
eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum
fields by an operator triple $(S,L,H)$. Then we explain how these nodes can be
composed into a network with arbitrary connectivity, including coherent
feedback channels, using algebraic rules, and how to derive the dynamics of
network components and output fields. The second part of the review discusses
several extensions to the basic SLH framework that expand its modeling
capabilities, and the prospects for modeling integrated implementations of
quantum input-output networks. In addition to summarizing major results and
recent literature, we discuss the potential applications and limitations of the
SLH framework and quantum input-output networks, with the intention of
providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving
correction