2023
DOI: 10.1002/aisy.202300185
|View full text |Cite
|
Sign up to set email alerts
|

SSRNet: A Deep Learning Network via Spatial‐Based Super‐resolution Reconstruction for Cell Counting and Segmentation

Abstract: Cell counting and segmentation are critical tasks in biology and medicine. The traditional methods for cell counting are labor‐intensive, time‐consuming, and prone to human errors. Recently, deep learning‐based cell counting methods have become a trend, including point‐based counting methods, such as cell detection and cell density prediction, and non‐point‐based counting, such as cell number regression prediction. However, the point‐based counting method heavily relies on well‐annotated datasets, which are sc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 55 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?