This paper concentrates on the global synchronization of the fractional‐order multi‐linked complex network (FMCN) via periodically intermittent control. It should be stressed that periodically intermittent control is employed to the FMCN for the first time. Moreover, the network is defined on digraphs with different weights, and two situations on topological structure of the network are discussed, including each digraph being strongly connected, and the biggest one being strongly connected. Based on Lyapunov method and graph theory, some synchronization criteria are obtained under two situations. And, the obtained synchronization criteria have a close relationship with the order of fractional‐order derivative, coupling strength, control gain, control rate, and control period. Besides, for practicability, theoretical results are applied to studying the synchronization of fractional‐order multi‐linked chaotic systems, and some sufficient conditions are provided. For a special case, fractional‐order multi‐linked Lorenz chaotic systems, numerical simulations are given to indicate the feasibility of theoretical results and the effectiveness of control strategy.