This paper proposes a plug-in electric vehicle battery charger using SEPIC converter with coupled inductor. Here, the charger operates as a switched mode power supply (SMPS). The output dc voltage is controlled by varying the duty ratio of dc/dc converter by PWM technique. In addition, a new approach is introduced to control the dc link voltage using PI and PID controllers. The proposed model provides reduced cost, lower switching losses, lower conduction losses and higher efficiency. This topology optimize the efficiency of the converter over the battery voltage range (9V -38V) and load conditions without adding any additional circuit or implementing any on/off control techniques. The configuration without full bridge LLC converter are presented and analyzed. A 3.3 KW Lithium-ion battery with an output voltage of 9V to 38V from variable dc link voltage is simulated. In comparison to conventional approaches, the efficiency of the SEPIC converter is improved by 6%.