Using the Kolmogorov–Arnold–Mozer (KAM) theory, we investigate the stability of May’s host–parasitoid model’s solutions with proportional stocking upon the parasitoid population. We show the existence of the extinction, boundary, and interior equilibrium points. When the host population’s intrinsic growth rate and the releasement coefficient are less than one, both populations are extinct. There are an infinite number of boundary equilibrium points, which are nonhyperbolic and stable. Under certain conditions, there appear 1:1 nonisolated resonance fixed points for which we thoroughly described dynamics. Regarding the interior equilibrium point, we use the KAM theory to prove its stability. We give a biological meaning of obtained results. Using the software package Mathematica, we produce numerical simulations to support our findings.