The paper is involved with switched projective synchronization of two identical chaotic systems with random parameter using adaptive control method. Based on the orthogonal polynomial expansion of the Hilbert spaces, the Newton-Leipnik system with random parameter is transformed as the equivalent deterministic system. At last, an adaptive controller can be designed by the Lyapunov stability theorem for achieving switched projective synchronization of the equivalent deterministic system with different initial values. Corresponding numerical simulations are performed to verify the effectiveness of presented schemes for synchronizing the stochastic Newton-Leipnik system.