Local strict QSR‐dissipativity of a switched nonlinear system is studied using the linearization technique in this paper. We obtain local strict QSR‐dissipativity of a switched system even if each subsystem is not locally strictly QSR dissipative by designing a switching law. The derived dissipative sufficient condition is characterized by a modified Lyapunov‐Metzler inequality that can be simplified as an LMI by assuming specific forms. Two special forms of local strict QSR‐dissipativity, local input state strict passivity and local L2‐gain, are considered. When the approximate errors of a switched affine system satisfy certain conditions, local strict passivity can be drawn from its linearization. Finally, a numerical example is given to illustrate how to apply the proposed method to achieve passivity of switched nonlinear systems.