Abstract. We illustrate the appearance of oscillating solutions in delay differential equations modeling hematopoietic stem cell dynamics. We focus on autonomous oscillations, arising as consequences of a destabilization of the system, for instance through a Hopf bifurcation. Models of hematopoietic stem cell dynamics are considered for their abilities to describe periodic hematological diseases, such as chronic myelogenous leukemia and cyclical neutropenia. After a review of delay models exhibiting oscillations, we focus on three examples, describing different delays: a discrete delay, a continuous distributed delay, and a state-dependent delay. In each case, we show how the system can have oscillating solutions, and we characterize these solutions in terms of periods and amplitudes.