This study addresses the gain-scheduled control problem for discrete-time delayed non-linear parameter-varying (NLPV) and linear parameter-varying (LPV) systems. First, by constructing the parameter-dependent Lyapunov-Krasovskii functional and employing multiple auxiliary functions, delay-dependent reciprocally convex inequality, and selecting a suitable augmented vector, novel delay-dependent linear matrix inequality conditions for the static output-feedback control design and state-feedback control design for delayed NLPV are provided. Second, the results obtained for discrete-time delayed NLPV systems are modified in a simple way to deal with discrete-time delayed LPV systems. Finally, the effectiveness of the proposed methods is illustrated by numerical examples.