Microemulsion properties significantly impact any EOR process that relies on surfactants or soaps to generate ultralow interfacial tension to displace trapped oil. Unfavorable microemulsion viscosity can lead to high chemical retention, low oil recovery, and overall unfavorable performance across all modes. Controlling microemulsion properties is important in conventional approaches like surfactant-polymer (SP) and alkaline-surfactant-polymer (ASP) flooding, in addition to new applications like gravity stable displacements, spontaneous imbibition in fractured carbonates and unstable floods of viscous oil. Despite the central importance, microemulsion viscosity and rheology remain poorly understood.
This paper describes the results of an extensive experimental microemulsion study. We evaluated the effect of polymer on microemulsion viscosity in different microemulsion phase types (i.e. oil in water, bi-continuous, water in oil emulsions). We measured microemulsion viscosities across a broad salinity range for several crudes from light (API >30°) to heavy oils (API<14°) and observed Newtonian rheology for all phase types. The effect of cosolvents on microemulsion viscosity was also evaluated. Finally, we evaluated microemulsions with and without alkali to help understand potential differences between ASP and SP microemulsions.
We include many observations consistent with earlier literature using recently developed surfactants and report the microemulsion viscosity details for many high performance surfactant formulations across a wide range of conditions. We have also describe several observations, including polymer decreasing the required time to achieve equilibrium in microemulsion pipettes and the qualitative change in microemulsion behavior with and without polymer in Windsor Type III microemulsions.