“…Notice that, with the exception of the inertial terms M iθi and the possibly non-unit coefficients D i , the power network dynamics (8)-(10) are a perfect electrical analog of the coupled oscillator model (1) with ω i ∈ {−P l,i , P m,i , P d,i }. Thus, it is not surprising that scientists from different disciplines recently advocated coupled oscillator approaches to analyze synchronization in power networks (Tanaka et al, 1997;Subbarao et al, 2001;Hill and Chen, 2006;Filatrella et al, 2008;Buzna et al, 2009;Fioriti et al, 2009;Simpson-Porco et al, 2013;Dörfler and Bullo, 2012b;Rohden et al, 2012;Dörfler et al, 2013;Mangesius et al, 2012;Motter et al, 2013;Ainsworth and Grijalva, 2013). The theoretical tools presented in this article establish how frequency synchronization in power networks depend on the nodal parameters (P l,i , P m,i , P d,i ) as well as the interconnecting electrical network with weights a ij .…”