The synthesis of 1,3,3-trimethyl-9′-acryloxyspiro[indoline-2,3′(3H)naphtho[2,1-b][l,4]-oxazine] (AISO) was carried out by catalytic esterification of 1,3,3-trimethyl-9′-hydroxyspiro-[indoline-2,3′(3H)naphtho[2,1-b][l,4]oxazine] (SO–OH) and acrylic acid in the presence of 1,3-dicyclohexylcarbodiimide (DCC) and N-dimethylaminopyridine (DMAP). Then, the synthesis of the target copolymer (NC-g-AISO) was was carried out by benzoyl peroxide (BPO)-induced graft copolymerization of the AISO monomer onto nitrocellulose (NC) in a homogeneous methyl isobutyl ketone medium. The structure of NC-g-AISO was characterized by Fourier transform infrared (IR) spectroscopy, 13C Nuclear Magnetic Resonance (NMR) spectra and thermogravimetric (TG) analysis. The photochromic properties of NC-g-AISO were investigated by examining UV–Vis spectra in ethyl acetate solution and solid membrane. Compared with the AISO monomer in ethyl acetate solution, the thermal color decay stability of the colored form of NC-g-AISO in ethyl acetate solution and in solid membrane improved significantly. The thermal color decay reaction rate constants in ethyl acetate solution and membrane at 25 °C were 1.77 × 10–2 and 1.36 × 10–3 s–1, respectively, fitted using the first-order reaction equation. After ten photochromic cycles, the relative absorption intensity of the colored form of NC-g-AISO decreased by 0.85%, indicating that the NC-g-AISO membrane has good reversible photochromic behavior.