2021
DOI: 10.48550/arxiv.2108.01248
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Stability of Numerical Solution to Pantograph Stochastic Functional Differential Equations

Abstract: In this paper, we study the convergence of the Euler-Maruyama numerical solutions for pantograph stochastic functional differential equations which was proposed in [11]. We also show that the numerical solutions have the properties of almost surely polynomial stability and exponential stability with the help of semi-martingale convergence theorem.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?