In this paper, we experimentally investigated the mode configuration of an excited-state quantum dot laser (ESQDL) under concave mirror optical feedback, and the influences of the feedback strength on the mode characteristics were analyzed. The results showed that after introducing concave mirror optical feedback, some longitudinal modes of the excited-state (ES) existing in a free-running ESQDL could be suppressed. When the feedback strength increased to a certain extent, the ground-state (GS) emission occurred and co-existed with the ES emission. By further increasing the feedback strength, all the longitudinal modes of the ES emission were suppressed, and only the longitudinal modes of the GS emission could be observed. As a result, the emission-state switching from the ES to GS emission was realized. When the ESQDL was biased at a larger current, the feedback strength required to achieve emission-state switching was stronger.