2001
DOI: 10.1006/jdeq.2000.3832
|View full text |Cite
|
Sign up to set email alerts
|

Stability of Singular Equilibria in Quasilinear Implicit Differential Equations

Abstract: This paper addresses stability properties of singular equilibria arising in quasilinear implicit ODEs. Under certain assumptions, local dynamics near a singular point may be described through a continuous or directionally continuous vector field. This fact motivates a classification of geometric singularities into weak and strong ones. Stability in the weak case is analyzed through certain linear matrix equations, a singular version of the Lyapunov equation being especially relevant in the study. Weak stable s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
9
0
3

Year Published

2002
2002
2018
2018

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 17 publications
(13 citation statements)
references
References 51 publications
(82 reference statements)
1
9
0
3
Order By: Relevance
“…The aim of the paper is to classify the normal forms for generalized vector fields. Later papers have studied normal forms [73] and stability [84] of such equations. Finally, a brief review on singular system of differential equations is presented in [33], where their geometric features, including a geometric method for obtaining a nonnumerical solution, are analized.…”
Section: Geometric Formulations Of Singular Differential Equationsmentioning
confidence: 99%
“…The aim of the paper is to classify the normal forms for generalized vector fields. Later papers have studied normal forms [73] and stability [84] of such equations. Finally, a brief review on singular system of differential equations is presented in [33], where their geometric features, including a geometric method for obtaining a nonnumerical solution, are analized.…”
Section: Geometric Formulations Of Singular Differential Equationsmentioning
confidence: 99%
“…Systems such as will be called constrained systems , see . Other possible names are quasilinear differential equations , generalized vector fields , or even differential‐algebraic equations (DAE), since some relations in may not include any of the derivatives of the components of the state vector x=false(x1,,xmfalse)double-struckRm, yielding a set with some algebraic equations together with some differential equations.…”
Section: Introductionmentioning
confidence: 99%
“…Systems of the form differ from autonomous ordinary differential equations due to the existence of the so‐called impasse set which is given by scriptIA=xRm:δA(x)=trueprefixdetA(x)=0.The main reason for this name is that a solution x(t) of can reach an impasse point pscriptIA at some time t 0 , and then could not be defined anymore when t>t0. It is also common to use the word singular to refer to the points in IA, since at these points the matrix A(x) is singular (see, e.g., ).…”
Section: Introductionmentioning
confidence: 99%
“…En este capítulo trabajaremos con EDAs cuasilineales singulares deíndice 0 y enunciaremos resultados conocidos para problemas estacionarios y no estacionarios. Ilustraremos el problema estacionario con un ejemplo sobre el método continuo de Newton [17], [18], [19].…”
Section: Capítulo 3 Ecuaciones Diferenciales Algebraicas Singularesunclassified
“…Porúltimo, utilizamos el algoritmo de desingularización para establecer una clasificación sobre los distintos tipos v vi de equilibrio en estos modelos.En el Capítulo 3 se establece la clasificación de las EDAs cuasilineales singulares en estacionarias y no estacionarias. Para ilustrar la clase de EDAs cuasilineales singulares estacionarias, se presenta un ejemplo de aplicación en el método continuo de Newton[19] [17]. Para el caso de las EDAs cuasilineales singulares no estacionarias, presentamos algunos resultados preliminares que se aplican en el Capítulo 4,[1],[10],[17].En el Capítulo 4 se presentan algunos resultados conocidos sobre estabilidad en problemas no estacionarios, restringiendo la dinámica a una variedad central.…”
unclassified