SummaryThis paper addresses the solution of parabolic evolution equations simultaneously in space and time as may be of interest in, for example, optimal control problems constrained by such equations. As a model problem, we consider the heat equation posed on the unit cube in Euclidean space of moderately high dimension. An a priori stable minimal residual Petrov–Galerkin variational formulation of the heat equation in space–time results in a generalized least squares problem. This formulation admits a unique, quasi‐optimal solution in the natural space–time Hilbert space and serves as a basis for the development of space–time compressive solution algorithms. The solution of the heat equation is obtained by applying the conjugate gradient method to the normal equations of the generalized least squares problem. Starting from stable subspace splittings in space and in time, multilevel space–time preconditioners for the normal equations are derived. In order to reduce the complexity of the full space–time problem, all computations are performed in a compressed or sparse format called the hierarchical Tucker format, supposing that the input data are available in this format. In order to maintain sparsity, compression of the iterates within the hierarchical Tucker format is performed in each conjugate gradient iteration. Its application to vectors in the hierarchical Tucker format is detailed. Finally, numerical results in up to five spatial dimensions based on the recently developed htucker toolbox for MATLAB are presented. Copyright © 2014 John Wiley & Sons, Ltd.