Stability of the Borell–Brascamp–Lieb Inequality for Multiple Power Concave Functions
Meng Qin,
Zhuohua Zhang,
Rui Luo
et al.
Abstract:In this paper, we prove the stability of the Brunn–Minkowski inequality for multiple convex bodies in terms of the concept of relative asymmetry. Using these stability results and the relationship of the compact support of functions, we establish the stability of the Borell–Brascamp–Lieb inequality for multiple power concave functions via relative asymmetry.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.