In special areas, the highways may suffer from such diseases as deformation, cracking, subsidence, and potholes, making highway maintenance a complex and difficult task. To obtain the law-term deformation law of the subgrade and accurately evaluate the subgrade and pavement stability, this paper establishes a subgrade stability evaluation model based on artificial neural network (ANN). Firstly, the law of unstable subgrade deformation in highways of special areas was derived by analyzing the influencing factors on subgrade stability, namely, temperature field, moisture field, and traffic load. Next, the correlations between input and output characteristic quantities were extracted, and used to construct the nonredundant mapping function between influencing factors of subgrade unstable deformation and the levels of subgrade stability. Finally, a fuzzy neural network (FNN) was constructed based on Takagi-Sugeno model, realizing the evaluation of subgrade stability. The proposed model was proved effective and accurate through experiments.