The construction of dams may lead to dramatic changes in fish assemblages due to the loss of lotic habitat caused by impoundment, which have been well documented. However, knowledge of the temporal variation of fish assemblages in the transitional zone, which is an ecotone between lotic and lentic environments of the reservoir, is still very rare. In the present study, fishes in the transitional zone of the Three Gorges Reservoir were sampled from 1997 to 2002 and from 2006 to 2009 to investigate interannual variations of fish assemblages. The results showed that 9 families, composed of 77 species, were found in the transitional zone with Cyprinidae as the dominant group. By cluster analysis (CLUSTER) and non-metric multidimensional scaling analysis (MDS), assemblages were separated into two groups at a Bray-Curtis similarity value of 77.26%, representing the pre-impoundment period and post-impoundment period. Following analysis of similarity percentages of species contributions (SIMPER), shifts in abundances of Coreius guichenoti, Rhinogobio cylindricus and Coreius heterodon, etc. contributed most to the difference between the two groups. Surprisingly, contrasting to the drastic changes in lacustrine region, the fish assemblage in the transitional zone appeared to be relatively stable, since the ten core species caught were consistently recorded every year, and no significant species replacement occurred during our study period. Besides, the moderate index of persistence indicated persistence of the fish assemblage as well, in spite of the shift of some species. Based on the results of ordination and time-lag analysis, the fish assemblage in the transitional zone showed no directional change. We conclude that fish assemblage in the transitional zone of the Three Gorges Reservoir was stable across the surveyed years. Based on our results, we propose that maintenance of dynamic transitional zones in reservoirs will be useful for the preservation of fishes, particularly for the endemic species inhabiting the upper Yangtze.