We present new version of previously published Fortran and C programs for solving the Gross-Pitaevskii equation for a Bose-Einstein condensate with contact interaction in one, two and three spatial dimensions in imaginary and real time, yielding both stationary and non-stationary solutions. To reduce the execution time on multicore processors, new versions of parallelized programs are developed using Open Multi-Processing (OpenMP) interface. The input in the previous versions of programs was the mathematical quantity nonlinearity for dimensionless form of Gross-Pitaevskii equation, whereas in the present programs the inputs are quantities of experimental interest, such as, number of atoms, scattering length, oscillator length for the trap, etc. New output files for some integrated one-and two-dimensional densities of experimental interest are given. We also present speedup test results for the new programs. . However, a vast majority of users use single-computer programs, with which the solution of a realistic dynamical 1D problem, not to mention the more complicated 2D and 3D problems, could be time consuming. Now practically all computers have multicore processors, ranging from 2 up to 18 and more CPU cores. Some computers include motherboards with more than one physical CPU, further increasing the possible number of available CPU cores on a single computer to several tens. The present programs are parallelized using OpenMP over all the CPU cores and can significantly reduce the execution time. Furthermore, in the old version of the programs [1, 2] the inputs were based on the mathematical quantity nonlinearity for the dimensionless form of the GP equation. The inputs for the present versions of programs are given in terms of phenomenological variables of experimental interest, as in Refs. [4,5], i.e., number of atoms, scattering length, harmonic oscillator length of the confining trap, etc. Also, the output files are given names which make identification of their contents easier, as in Refs. [4,5]. In addition, new output files for integrated densities of experimental interest are provided, and all programs were thoroughly revised to eliminate redundancies.
Summary of revisions: Previous Fortran [1] and C [2] programs for the solution of time-dependent GP equation in 1D, 2D, and 3D with different trap symmetries have been modified to achieve two goals. First, they are parallelized using OpenMP interface to reduce the execution time in multicore processors. Previous C programs [2] had OpenMPparallelized versions of 2D and 3D programs, together with the serial versions, while here all programs are OpenMPparallelized. Secondly, the programs now have input and output files with quantities of phenomenological interest. There are six trap symmetries and both in C and in Fortran there are twelve programs, six for imaginary-time propagation and six for real-time propagation, totaling to 24 programs. In 3D, we consider full radial symmetry, axial symmetry and full anisotropy. In 2D, we consider circular symmet...