We first introduce the notion of positive linear Volterra-Stieltjes differential systems. Then, we give some characterizations of positive systems. An explicit criterion and a Perron-Frobenius type theorem for positive linear Volterra-Stieltjes differential systems are given. Next, we offer a new criterion for uniformly asymptotic stability of positive systems. Finally, we study stability radii of positive linear Volterra-Stieltjes differential systems. It is proved that complex, real and positive stability radius of positive linear Volterra-Stieltjes differential systems under structured perturbations coincide and can be computed by an explicit formula. The obtained results in this paper include ones established recently for positive linear Volterra integrodifferential systems [36] and for positive linear functional differential systems [32]-[35] as particular cases. Moreover, to the best of our knowledge, most of them are new. Mathematics Subject Classification (2000). Primary 45J05; Secondary 34K20, 93D09.