Stable neuronal assemblies are generally regarded as neural correlates of mental representations. Their temporal sequence corresponds to the experience of a direction of time, sometimes called the psychological time arrow. We show that the stability of particular, biophysically motivated models of neuronal assemblies, called coupled map lattices, is supported by causal interactions among neurons and obstructed by non-causal or anti-causal interactions among neurons. This surprising relation between causality and stability suggests that those neuronal assemblies that are stable due to causal neuronal interactions, and thus correlated with mental representations, generate a psychological time arrow. Yet this impact of causal interactions among neurons on the directed sequence of mental representations does not rule out the possibility of mentally less efficacious non-causal or anti-causal interactions among neurons.