Abstract. In this paper, the stabilization problem of a autonomous linear time invariant fractional order (LTI-FO) switched system with different derivative order in subsystems is outlined. First, necessary and sufficient condition for stability of an LTI-FO switched system with different derivative order in subsystems based on the convex analysis and linear matrix inequality (LMI) for two subsystems is presented and proved. Also, sufficient condition for stability of an LTI-FO switched system with different derivative order in subsystems for more than two subsystems is proved. Then a sliding sector is designed for each subsystem of the LTI-FO switched system. Finally, a switching control law is designed to switch the LTI-FO switched system among subsystems to ensure the decrease of the norm of the switched system. Simulation results are given to show the effectiveness of the proposed variable structure controller.